34. Statement $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$

- (1) is contradiction
 - (2) is tautology
 - (3) is neither contradiction not tautology
 - (4) none of these

(2)
$$(\neg q \rightarrow \neg p)$$
 is contrapositive of $(p \rightarrow q)$.

Therefore, $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$ is tautology.

ned with CamScanner